- OTS: 60-11, 913 JPRS: 5022
| 1L July 1960

DISTRIBUTION STATEMENTA
Approved for Public Release
Distribution Unlimited

SHOCK WAVES IN SOLIDS
- USSR -

by L. P, Orlenko and X, P. Stanyukovich

Reproduced From :
Best Available Copy 2 0 0 0 0 7 0 7 1 6 8
_ -~ Distributed bys-— )

CFFICE OF TECHNICAL SERVICES
S. DEPARTMENT CF COMVERCE
WASHINGTON 25, D. C,

ot i ot . 5 i B e O G S B e P S Pt P i e i O B A Dol S A S N G R S B S T 8 S A S - Gt T T ) W e S B e S WD e v S Tew B

U, S. JOINT PUBLICATIONS RESEARCH SERVICE
205 EAST li2nd STREST, SUITE 300
NEW YOUK 17, N. Y.
'DTIC QUALITY INEPBCTED 4




' JPRS: 5022

cs0: 3712-N

bt
b
w0
3
3:'6
H
=
W

SHOCK  WAVES

-

This is a transiation sf an article
written by L.P. Orlenko and K.P. Sta-
nyukovich in Tevestiva Vyashikh Ucheb-
nykh Zavedeniy, Fiziks (News of the
Higher Institutions of Learning, Phy-
sics), No. 6, 1958, pages 1428, f

{(Moscow Higher Poehnical School imeni
H.¥e, Bausmang submitted to editors
16 April 1958} :

The propagation of shock waves in golids under
high pressures considering the compressibility of the
waterial is examined imn this article., The motion of
the material is studied in the zone of an incident shock
wave snd the reflected wave ZORE, wnere the body has
fFinite dimensions. The solution is obiained in the
form of finite formulas.

The wmotion of the incident shock wave is investi-
gated by means of & special scoiution of differential
equations of motion. The wave roefiected from & free
gsurface is imnvestigated by a general soplation of dif-
ferential eqguaiions of motion. The results obtained
make it possible to determine a2ll of the parasmeters of
both incident and reflected WEVHE o

By utilizing the theoretical resulis ochtained,
a dynamic diagram of deformation stress can be derived
with the appropriate experiments.

To solve the dypnamic problems ariging when
detonation or shock charges are applied to a solid



it is necessary to know the dypamic deformation-stress
CUrYe. Am experimental determination of swuch diag-
presents considerable difficulties. It is known
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¥ the pressure in the wave sxceeds the pressure



corresponding to the discontinuity b of the 6 - £ curve,
shock waves will be propagated in the solid. It is
apparent that under these pressures the solid may be
regarded as a guasifluid (1). :

It dis known that the basic equations of one-dimer
gional motion have the Torm
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where u ~ iz the particle velocity, v - is =z
volume; t - is time; p = pregsure; h -~ is <
coordinate.
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If one introduces the terms 6 = -ps & o= w;m& -
&
= Po Ly, (2)
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then we obtain
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The equation of state (curve b - e in Fig. 1) is
approximated by the relation having the following form:

G Gy = A {2}
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where 8,, A and & are constantis,
We then obhtain
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The velocity of sound in this case is determined
by the expression
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The velocity of propagation of disturbances from
particle to particle will be egual to

s
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We write eguation {(3) in the Form
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We will find particular seolutions

for this system
of eguations. We will assume for this purpose, i
that & = € {w), then

we will arrive at the sguatioxn
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The sclution of equation (10) has the form
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In the equation of state (4} the specifiec solution
may be written in the form
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The solution of

this equation:
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Whereupon the solution of {3.8) assumes the form
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Tie special solution of (11} assumes the form
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We multiply {23} by du, then
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then ¢ = const.,; since without limit-
sxentation 1t wev alweays be assumed

¢ i Flal=0, along the characteristic
the eguation of steaie (&}, we have
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where Plz}

o

ir giis determined al ong the chavecieristic
v o~ 2 = const., then when F{z) = O, £, = 0.
We will loek at the solution of a concrete example,
Let ws agsume &t the mowment of time t = O in cross-
h = 0 there is a pressure p = p, 2applied, where
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pyis greater than & , where 6 is the pressure corres-

ponding to the dl@Wnn inuity point in curve 6 -~ € (Fig.l)
which then is found sccerding to the law
. % 3
A LI BRI (23}

B e 4t

where p,,T and n are constants,

It is known from detonaiion theory. that it is
poessible te assume p, = 0, n =« 1L and ¥ = B where 1
is the height of the loading and D is the velocity of
the detonation,

We find the lew of motion of the wmedium in the
passging wave,. The metion of the medium in the wave will
be subject to the specific solution (28) where it is

necessary to determine F(z):
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We will determine the constanit in the first egua-
tion of the system (A},
z
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Using equation {4}, (29) can bz writien in the
form
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For the initial moment
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We express the local velocity of sound ¢ by =@
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If n = 1, then n}l::“tzif—wl%* "‘Z“"L!ﬁ"i;‘“} mfiié
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or
; Z ; .
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where £,= 0, (22 - 2.} and £, = £,(-2,),

z% dis the integration constant.

The second condition provides that when h = P“d
the condition
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is fulfilled, where

Thus, by means of (41} and h2) the parameters of
the reflected wave can be determined. The found solution
is complicated for investigation, hence we will find a
less precisge, althoughk considerably simpler solution of
the problem. It is kpown from detenation theory that
the pressure on the surface of the plate falls according
to the law

i\ .
p == puf——) | (43)

whaere
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The wvelocity of the shock wave D is determined

by the formula
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We taks the eguation of state in the form
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where Ai’ Bl and.k are constants,

! The motion of the shock wave will be determined by special
solutions of the svstem of equstions (1) written in
Bulers form:
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The wvelocity of the sghock wave D¢ iz determined
: 3 ¥
by the expression
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Function F{u} is determined by the condition that
when x = 0 the pressure waries according to the law (43):
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where EH is the initial speed of sound in the plate
where P = Py
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By means of (47) equétion‘(ﬁﬁ) assumes the form
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Wher % = O we detevmine F{u) assording to (48&)
and (52): ‘
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Equation (48} now has the form
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When k = % this expression is written in the form

/ - [ .
x = {C, 4+ 2ie} ( Y. S o V. (54)
' S g c, L

We convert thiz expression to the Torm
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We will designate the relation
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where A is the integration constant.
The constamt A is determined frowm the condition

that when x = O,
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Equation (59) can now be written im the form
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Let us turn fo the new variakles according to
equation (58}
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